| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 
 | 
 
 import torch
 from torch import nn, optim
 
 from torch.autograd import Variable
 from torch.utils.data import DataLoader
 from torchvision import transforms
 from torchvision import datasets
 
 
 
 batch_size = 128
 learning_rate = 1e-2
 num_epoches = 20
 
 
 
 
 
 
 
 train_dataset = datasets.MNIST(
 root='./data', train=True, transform=transforms.ToTensor(), download=True)
 
 test_dataset = datasets.MNIST(
 root='./data', train=False, transform=transforms.ToTensor())
 
 train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
 test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
 
 
 
 class Cnn(nn.Module):
 def __init__(self, in_dim, n_class):
 super(Cnn, self).__init__()
 self.conv = nn.Sequential(
 nn.Conv2d(in_dim, 6, 5, stride=1, padding=2),
 nn.ReLU(True),
 nn.MaxPool2d(2, 2),
 nn.Conv2d(6, 16, 5, stride=1, padding=0),
 nn.ReLU(True),
 nn.MaxPool2d(2, 2))
 
 self.fc = nn.Sequential(
 nn.Linear(400, 120),
 nn.Linear(120, 84),
 nn.Linear(84, n_class))
 
 def forward(self, x):
 out = self.conv(x)
 out = out.view(out.size(0), -1)
 out = self.fc(out)
 return out
 
 
 model = Cnn(1, 10)
 use_gpu = torch.cuda.is_available()
 if use_gpu:
 model = model.cuda()
 
 
 criterion = nn.CrossEntropyLoss()
 optimizer = optim.SGD(model.parameters(), lr=learning_rate)
 
 
 
 for epoch in range(num_epoches):
 print('epoch {}'.format(epoch + 1))
 print('*' * 10)
 running_loss = 0.0
 running_acc = 0.0
 for i, data in enumerate(train_loader, 1):
 img, label = data
 
 if use_gpu:
 img = img.cuda()
 label = label.cuda()
 img = Variable(img)
 label = Variable(label)
 
 out = model(img)
 loss = criterion(out, label)
 running_loss += loss.item() * label.size(0)
 _, pred = torch.max(out, 1)
 num_correct = (pred == label).sum()
 accuracy = (pred == label).float().mean()
 running_acc += num_correct.item()
 
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()
 """
 # ========================= Log ======================
 step = epoch * len(train_loader) + i
 # (1) Log the scalar values
 info = {'loss': loss.data[0], 'accuracy': accuracy.data[0]}
 
 for tag, value in info.items():
 logger.scalar_summary(tag, value, step)
 
 # (2) Log values and gradients of the parameters (histogram)
 for tag, value in model.named_parameters():
 tag = tag.replace('.', '/')
 logger.histo_summary(tag, to_np(value), step)
 logger.histo_summary(tag + '/grad', to_np(value.grad), step)
 
 # (3) Log the images
 info = {'images': to_np(img.view(-1, 28, 28)[:10])}
 
 for tag, images in info.items():
 logger.image_summary(tag, images, step)
 if i % 300 == 0:
 print('[{}/{}] Loss: {:.6f}, Acc: {:.6f}'.format(
 epoch + 1, num_epoches, running_loss / (batch_size * i),
 running_acc / (batch_size * i)))
 """
 
 print('Finish {} epoch, Loss: {:.6f}, Acc: {:.6f}'.format(
 epoch + 1, running_loss / (len(train_dataset)), running_acc / (len(train_dataset))))
 model.eval()
 eval_loss = 0
 eval_acc = 0
 for data in test_loader:
 img, label = data
 if use_gpu:
 img = Variable(img, volatile=True).cuda()
 label = Variable(label, volatile=True).cuda()
 else:
 img = Variable(img, volatile=True)
 label = Variable(label, volatile=True)
 out = model(img)
 loss = criterion(out, label)
 eval_loss += loss.item() * label.size(0)
 _, pred = torch.max(out, 1)
 num_correct = (pred == label).sum()
 eval_acc += num_correct.item()
 
 print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len(
 test_dataset)), eval_acc / (len(test_dataset))))
 print()
 
 
 torch.save(model.state_dict(), './cnn.pth')
 
 |